An instrument to measure fast gas phase radical kinetics at high temperatures and pressures.
نویسندگان
چکیده
Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument are reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25 000 s(-1)) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ∼900 K and ∼5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry.
منابع مشابه
The Kinetics of Methanation on Nickel Catalysts
An empirical rate equation was obtained for the methanation kinetics catalyzed by MCR-2X, a commercial catalyst prepared by Haldor-Topsoe. The studies were carried out in a fixed-bed reactor under differential conditions, and in a gradientless recycle reactor (Berry) over a range of total pressures, reactant concentractions (H2/CO ratios), and temperatures. The kinetics of methanation were foun...
متن کاملMeasurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation
In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...
متن کاملProducts of the Self-Reaction of HCO Radicals: Theoretical Kinetics Studies
The mechanism of the self-reaction of HCO radicals is investigated by using high-level quantum-chemical methods including M05-2X, CCSD, CCSD(T) and CRCC(2,3). Next, the rate coefficients for several product channels as a function of pressure and temperature are computed by employing statistical rate theories. Four important product channels are predicted to be CO + CO + H2, HCOH + OH, cis-(HCO)...
متن کاملKinetics of Propane Hydrate Formation in Agitated Reactor: A Mass Transfer Approach
Understanding the kinetics of gas hydrate formation is essential to model and predict the hydrate formation (or dissociation) process. In the present paper, we investigated the formation of pure propane gas hydrate as a former gas. In this regard, several experiments were conducted to measure the rate of hydrate formation under various pressures (410 to 510 kPa) and temperatures (274 K to 277 K...
متن کاملTheoretical Study on the Kinetics of the Reaction of C2H with C2H2
In this theoretical research, the mechanism of the C2H + C2H2 reaction is studied by high-level quantum-chemical methods and kinetics of the reaction is investigated by statistical rate theories. High-level electronic structure calculation methods including M06-2X, CCSD(T), CBS-Q and G4 methods are employed to explore the doublet potential energy surface of the reaction and compute the molecula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2016